CONTEST \#2.

SOLUTIONS

2-1. 5 Let B be the number of boys and G be the number of girls. The second sentence in the problem implies $B-1=G$. The third sentence in the problem implies $B=3(G-1)$. Combining these equations gives the equation $3(G-1)-1=G$, which solves to obtain $3 G-4=G \rightarrow 2 G=4 \rightarrow G=2 \rightarrow B=3$. There are $2+3=\mathbf{5}$ children in the family.

2-2. 40 Factor to obtain $x^{2} y-x y^{2}=x y(x-y)=5(8)=40$. Note that this solution does not require finding the values of either x or y.

2-3. $\mathbf{0}$ The equation of the line can be re-written as $5(4 x+3 y)=2016$. This implies that if x and y are integers, then 5 divides 2016. Since this is never true, $N=\mathbf{0}$.

2-4. 232π The cross section is a circle of radius $\sqrt{9}=3$. The surface area of the sphere is $S=4 \pi r^{2}$ where $r^{2}=7^{2}+3^{2}=58$, so $S=\mathbf{2 3 2} \pi$.

2-5. 1 Notice that $2^{3}+5=13$, so 13 is a prime that satisfies the conditions of the problem. Any other prime is an odd number, and odd numbers have odd cubes, and adding 5 to an odd cube makes the result even (and therefore not prime). Therefore, there is $\mathbf{1}$ such prime.
2-6. (8,5) Substituting, $\frac{x+\frac{1}{x-3}}{x-3+\frac{1}{x}}=\frac{8}{5}$. This implies $5 x+\frac{5}{x-3}=8 x-24+\frac{8}{x}$. Multiplying through by $x(x-3)$ gives $5 x^{2}(x-3)+5 x=8 x^{2}(x-3)-24 x(x-3)+8 x-24$, which implies $0=3 x^{3}-33 x^{2}+75 x-24 \rightarrow 0=x^{3}-11 x^{2}+25 x-8$. Because the value of x is an integer, x must be a factor of 8 . Substitution shows that $x=1, x=2$, and $x=4$ are not solutions, but $x=8$ is, so $x=8 \rightarrow y=5$. The ordered pair is $(\mathbf{8}, \mathbf{5})$.

Alternate Solution: Clear the denominators in the complex fraction: $\frac{x+\frac{1}{y}}{y+\frac{1}{x}}=\frac{x y+1}{y} \cdot \frac{x}{x y+1}$, so the complex fraction reduces to $\frac{x}{y}$, so $\frac{x}{y}=\frac{8}{5}$ with $x-y=3$, so $(x, y)=(8,5)$.

T-1. Compute the number of positive integer factors of 2016.
T-1Sol. 36 Because $2016=2^{5} \cdot 3^{2} \cdot 7$, the number of positive integer factors is $(5+1) \cdot(2+1) \cdot(1+1)=\mathbf{3 6}$.

T-2. Given rectangle $A B C D$ and point P in the interior of $A B C D$. If $P A=7, P B=15$, and $P C=24$, compute $P D$.
T-2Sol. 20 For any interior point P of a rectangle $A B C D, P A^{2}+P C^{2}=P B^{2}+P D^{2}$. Try to prove it! By substituting, $P B^{2}=7^{2}+24^{2}-15^{2} \rightarrow P B=\mathbf{2 0}$.

T-3. In a box are 2 red stickers, 4 white stickers, and 6 blue stickers. Six stickers are chosen at random without replacement. Compute the probability that the six are 1 red, 2 white, and 3 blue. T-3Sol. | $\mathbf{2 0}$ |
| :---: |
| $\mathbf{7 7}$ |
| Choose |
| 1 | of the 2 reds, 2 of the 4 whites, and 3 of the 6 blues. Thus, the probability is $\frac{\binom{2}{1} \cdot\binom{4}{2} \cdot\binom{6}{3}}{\binom{12}{6}}$. This is equivalent to $\frac{2 \cdot \frac{4 \cdot 3}{2 \cdot 1} \cdot \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1}}{\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}}$, or $\frac{\mathbf{2 0}}{\mathbf{7 7}}$.

