CONTEST #2.

SOLUTIONS

2 - 1. **5** Let *B* be the number of boys and *G* be the number of girls. The second sentence in the problem implies B - 1 = G. The third sentence in the problem implies B = 3(G - 1). Combining these equations gives the equation 3(G - 1) - 1 = G, which solves to obtain $3G - 4 = G \rightarrow 2G = 4 \rightarrow G = 2 \rightarrow B = 3$. There are 2 + 3 = 5 children in the family.

2 - 2. 40 Factor to obtain $x^2y - xy^2 = xy(x - y) = 5(8) = 40$. Note that this solution does not require finding the values of either x or y.

2 - 3. O The equation of the line can be re-written as 5(4x + 3y) = 2016. This implies that if x and y are integers, then 5 divides 2016. Since this is never true, N = 0.

2 - **4**. **232** π The cross section is a circle of radius $\sqrt{9} = 3$. The surface area of the sphere is $S = 4\pi r^2$ where $r^2 = 7^2 + 3^2 = 58$, so $S = 232\pi$.

2 - 5. 1 Notice that $2^3 + 5 = 13$, so 13 is a prime that satisfies the conditions of the problem. Any other prime is an odd number, and odd numbers have odd cubes, and adding 5 to an odd cube makes the result even (and therefore not prime). Therefore, there is **1** such prime.

2 - 6. (8,5) Substituting, $\frac{x+\frac{1}{x-3}}{x-3+\frac{1}{x}} = \frac{8}{5}$. This implies $5x + \frac{5}{x-3} = 8x - 24 + \frac{8}{x}$. Multiplying through by x(x-3) gives $5x^2(x-3) + 5x = 8x^2(x-3) - 24x(x-3) + 8x - 24$, which implies $0 = 3x^3 - 33x^2 + 75x - 24 \rightarrow 0 = x^3 - 11x^2 + 25x - 8$. Because the value of x is an integer, x must be a factor of 8. Substitution shows that x = 1, x = 2, and x = 4 are not solutions, but x = 8 is, so $x = 8 \rightarrow y = 5$. The ordered pair is (8,5).

Alternate Solution: Clear the denominators in the complex fraction: $\frac{x+\frac{1}{y}}{y+\frac{1}{x}} = \frac{xy+1}{y} \cdot \frac{x}{xy+1}$, so

the complex fraction reduces to $\frac{x}{y}$, so $\frac{x}{y} = \frac{8}{5}$ with x - y = 3, so (x, y) = (8, 5).

Author: George Reuter - coachreu@gmail.com - Reviewer: Michael Curry - currymath@gmail.com

T-1. Compute the number of positive integer factors of 2016. **T-1Sol.** 36 Because $2016 = 2^5 \cdot 3^2 \cdot 7$, the number of positive integer factors is $(5+1) \cdot (2+1) \cdot (1+1) = 36$.

T-2. Given rectangle *ABCD* and point *P* in the interior of *ABCD*. If PA = 7, PB = 15, and PC = 24, compute *PD*.

T-2Sol. 20 For any interior point P of a rectangle ABCD, $PA^2 + PC^2 = PB^2 + PD^2$. Try to prove it! By substituting, $PB^2 = 7^2 + 24^2 - 15^2 \rightarrow PB = \mathbf{20}$.

T-3. In a box are 2 red stickers, 4 white stickers, and 6 blue stickers. Six stickers are chosen at random without replacement. Compute the probability that the six are 1 red, 2 white, and 3 blue. **T-3Sol.** $20 \over 77$ Choose 1 of the 2 reds, 2 of the 4 whites, and 3 of the 6 blues. Thus, the probability is $\frac{\binom{2}{1} \cdot \binom{4}{2} \cdot \binom{6}{3}}{\binom{12}{6}}$. This is equivalent to $\frac{2 \cdot \frac{4 \cdot 3}{2 \cdot 1} \cdot \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1}}{\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}{6 \cdot 5 \cdot 4 \cdot 2 \cdot 2 \cdot 1}}$, or $\frac{20}{77}$.

Author: George Reuter - coachreu@gmail.com - Reviewer: Michael Curry - currymath@gmail.com